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This is a talk that I would not, I'm afraid, have the nerve to give under any other circumstances. It's a story I've been saving up to 
tell Viki. Like so many of you here, I've enjoyed from time to time the wonderful experience of exploring with Viki some part of 
physics, or anything to which we can apply physics. We wander around strictly as amateurs equipped only with some elementary 
physics even if we don't throw much light on the other subjects. Now this is that kind of a subject, but I have still another reason for 
wanting to, as it were, needle Viki with it, because I'm going to talk for a while about viscosity. Viscosity in a liquid will be the 
dominant theme here and you know Viki's program of explaining everything including the height of mountains, with the elementary 
constants. The viscosity of a liquid is a very tough nut to crack, as he well knows, because when the stuff is cooled by merely 40 
degrees, its viscosity can change by a factor of a million. I was really amazed by fluid viscosity in the early days of NMR, when it 
turned out that glycerin was just what we needed to explore the behavior of spin relaxation. And yet if you were a little bug inside 
the glycerin looking around, you wouldn't see much change in your glycerin as it cooled. Viki will say that he can at least predict 
the logarithm of the viscosity. And that, of course, is correct because the reason viscosity changes is that it's got one of these 
activation energy things and what he can predict is the order of magnitude of the exponent. But it's more mysterious than that, Viki, 
because if you look at the Chemical Rubber Handbook table you will find that there is almost no liquid with viscosity much lower 
than that of water. The viscosities have a big range but they stop at the same place. I don't understand that. That's what I'm leaving 
for him. 

Now, I'm going to talk about a world which, as physicists, we 
almost never think about. The physicist hears about viscosity in high 
school when he's repeating Millikan's oil drop experiment and he 
never hears about it again, at least not in what I teach. And 
Reynolds's number, of course, is something for the engineers. And 
the low Reynolds's number regime most engineers aren't even 
interested in--except possibly chemical engineers, in connection 
with fluidized beds, a fascinating topic I heard about from a 
chemical engineering friend at MIT. But I want to take you into the 
world of very low Reynolds number--a world which is inhabited by 
the overwhelming majority of the organisms in this room. This 
world is quite different form the one that we have developed our 
intuitions in. 

I might say what got me into this. To introduce something that will 
come later, I'm going to talk partly about how microorganisms 
swim. That will not, however, turn out to be the only important 
question about them. I got into this through the work of a former 
colleague of mine at Harvard, Howard Berg. Berg got his Ph.D. 
with Norman Ramsey, working on a hydrogen maser, and then he 
went back into biology, which had been his early love, and into 
cellular physiology. He is now at the University of Colorado at 
Boulder, and has recently participated in what seems to me one of 
the most astonishing discoveries about the questions we're going to 
talk about. So it was partly Howard's work, tracking E. coli and 
finding out this strange thing about them, that got me thinking about 
this elementary physics stuff. 

Well here we go. In Fig. 1., you see an object which is moving through a fluid with velocity v . It has dimension a. In Stoke's law, 



the object is a sphere, but here it's anything; \eta and \rho are the viscosity and density of the fluid. The ratio of the inertial forces to 
the viscous forces, as Osborne Reynolds pointed out slightly less than a hundred years ago, is given by av\rho / \eta or av/ \nu, 

where \nu is called the kinematic viscosity. It's easier to remember its 
dimensions for water: \nu \approx 10^{-2} cm^2/sec. The ratio is 
called the Reynolds number and when that number is small the 
viscous forces dominate. Now there is an easy way, which I didn't 
realize at first, to see who should be interested in small Reynolds 
numbers. If you take the viscosity, \eta and square it and divide by by 
the density, you get a force (Fig. 2). No other dimensions come in at 
all, \eta^2 / \rho is a force. For water, since \eta \approx 10^{-2} and 
\rho \approx 1, \eta^2/ \rho \approx 10^{-4} dynes. That is a force 
that will tow anything, large or small, with a Reynolds number of 
order of magnitude 1. In other words, if you want to tow a submarine 
with Reynolds number 1 (or strictly speaking 1/6\pi if it's a spherical 
submarine) tow it with 10^{-4} dyne in water. So it's clear in this case 
that you're interested in small Reynolds number if you're interested in 
small forces in an absolute sense. The only other people who are 
interested in low Reynolds numbers, although they usually don't have 
to invoke it, are the geophysicists. The Earth's mantle is supposed to 
have a viscosity of 10^{21} P. If you now work out \eta^2/ \rho, the 
force is 10^{41} dyne. That is more than 10^9 times the gravitational 
force that half the Earth exerts on the other half! So the conclusion is, 
of course, that in the flow of the mantle of the Earth the Reynolds 
number is very small indeed. 

Now 

consider things that move through a liquid (Fig. 3). The Reynolds number for a man swimming in a liquid might be 10^4, if we put 
in reasonable dimensions, for a goldfish or a tiny guppy it might get down to 10^2. For the animals that we're going to be talking 
about, as we'll see in a moment it's about 10^{-4} or 10^{-5}. For these animals inertia is totally irrelevant. We know that F=ma, 
but they could scarcely care less. I'll show you a picture of the real animals in a bit but we are going to be taking about objects 
which are the order of a micron in size (Fig. 4). That's a micron scale, not a suture, in the animal in Fig. 4. In water where the 
kinematic viscosity is 10^{-2} cm/sec these things move around with a typical speed of 30 micron/sec. If I have to push that animal 
to move it, and suddenly I stop pushing, how far will it coast before it slows down? The answer is, about 0.1 angstrom. And it takes 



it about 0.6 microsec to slow down. I think this makes it clear what 
low Reynolds number means. Inertial plays no role whatsoever. If 
you are at very low Reynolds number, what you are doing at the 
moment is entirely determined by the forces that are exerted on you 
at that moment, and by nothing in the past. 

It helps to imagine under what conditions a man would be 
swimming at, say, the same Reynolds number as his own sperm. 
Well you put him in a swimming pool that is full of molasses, and 
the you forbid him to move any pare of his body faster than 1 
cm/min. Now imagine yourself in that condition; you're under the 
swimming pool in molasses, and now you can only move like the 
hands of a clock. If under those ground rules you are able to move a 
few meters in a couple of weeks, you may qualify as a low 
Reynolds number swimmer. 

I 
want to talk about swimming at low Reynolds number in a very general way. What does it mean to swim? Well, it means simply 
that you are in some liquid and are allowed to deform your body in some manner. That's all you can do. Move it around and move it 
back. Of course, you choose some kind of cyclic deformation because you want to keep swimming, and it doesn't do any good to 
use a motion that goes to zero asymptotically. You have to keep moving. So, in general, we are interested n cyclic deformations of a 
body on which there are no external torques or forces except those exerted by the surrounding fluid. In Fig. 5, there is an object 
which has a shape shown by the solid line; it changes its shape to the dashed contour and then it changes back. When it finally gets 
back to its original shape, the dotted contour, it has moved over and rotated a little. It has been swimming. When it executed the 
cycle, a displacement resulted. If it repeats the cycle, it will, of course, effect the same displacement, and in tow dimensions we'd 
see it progressing around a circle. In three dimensions its most general trajectory is a helix consisting of little kinks, each of which 
is the result of one cycle of shape change. 



There is a very funny thing about motion at low Reynolds number, 
which is the following. One special kind of swimming motion is 
what I cal a reciprocal motion. That is to say, I change my body 
into a certain shape and then I go back to the original shape by 
going through the sequence in reverse. At low Reynolds number, 
everything reverses just fine. Time, in fact, makes no difference---
only configuration. If I change quickly or slowly, the pattern of 
motion is exactly the same. If you take the Navier-Stokes equation 
and throw away the inertia terms, all you have left is \nabla^2 v = 
p/ \eta, where p is the pressure (Fig. 6). So, if the animal tries to 
swim by a reciprocal motion, it can't go anywhere. Fast or slow, it 
exactly retraces its trajectory and it's back where it started. A good 
example of that is a scallop. You know, a scallop opens its shell 
slowly and closes its shell fast, squirting out water. The moral of 
this is that the scallop at low Reynolds number is no good. It can't 

swim because it only has 
one hinge, and if you have 
only one degree of freedom 
in configuration space, you 
are bound to make a 
reciprocal motion. There is 
nothing else you can do. 
The simplest animal that 
can swim that way is an 
animal two hinges. I don't 
know whether one exists 
but Fig. 7 shows a 
hypothetical one. This 

animal is like a boat with a rudder at both front and back, and nothing else. This animal can swim. All it has to do is go through the 
sequence to configurations shown, returning to the original one at S_5. Its configuration space, of course, is two dimensional with 
coordinates \theta_1, \theta_2. The animal is going around a loop in that configuration space, and that enables it to swim. In fact, I 
worked this one out just for fun and you can prove from symmetry that it goes along the direction shown in the figure. As an 
exercise for the student, what is it that distinguishes that direction? 

You can invent other animals that have no trouble swimming. We had 
better be able to invent them, since we know they exist. One you might 
think of first as a physicist, is a torus. I don't know whether there is a 
toroidal animal, but whatever other physiological problems it might face, it 
clearly could swim at low Reynolds number (Fig. 8). Another animal 
might consist of two cells which were stuck together and were able to roll 
on one another by having some kind of attraction here while releasing 
there. That thing will "roll" along. I described it once a s a combination 
caterpillar tractor and bicycle built for two, but that isn't the way ti really 
works. In the animal kingdom, there are at least two other more common 
solutions to the problem of swimming at low Reynolds number (Fig. 9). 
One might be called the flexible oar. You see, you can't row a boat at low 
Reynolds number in molasses--if you are submerged--because the stiff oars 
are just reciprocating things. But if the oar is flexible, that's not true, 
because then the car bends one way during the first half of the stroke and 
the other during the second half. That's sufficient to elude the theorem that 
got the scallop. Another method, and the one we'll mainly be talking about, 
is what I call a corkscrew. If you keep turning it, that, of course, is not a 
reciprocal change in configuration space and that will propel you. At this 
point, I wish I could persuade you that the direction in which this helical 
drive will move in not obvious. Put yourself back in that swimming pool 



under molasses 
and move 
around very, 
very slowly. 
Your intuitions 
about pushing 
water 
backwards are 
irrelevant. 
That's not what 
counts. Now, 
unfortunately, 
it turns out that 
the thing does 
move the way 
your naive, 
untutored, and 
actually 
incorrect 
argument 
would indicate, 
but that's just a 
pedagogical 
misfortune we 
are always 
running into. 

Well, let's look at some real animals (Fig. 10). This figure I've taken from a paper of Howard Berg that he sent me. Here are three 
real swimmers. The one we're going to be talking about most is the famous animal, Escherichia coli, at A, which is a very tiny 
thing. Then there are two larger animals. I've copied down their Latin names and the may be old friends to some of you here. This 
thing (S. volutans) swims by waving its body as well as its tail and roughly speaking, a spiral wave runs down that tail. The 
bacterium E. coli on the left is about 2 micron long. The tail is the part that we are interested in. That's the flagellum. Some E. coli 
cells have them coming out the sides; and they may have several, but when they have several they tend to bundle together. Some 
cells are nonmotile and don't have flagella. They live perfectly well, so swimming is not an absolute necessity for this particular 

animal, but the one in the figure does swim. The flagellum is only 
about 130 angstrom in diameter. It is much thinner than the cilium 
which is another very important kind of propulsive machinery. 
There is a beautiful article on cilia in the October 1974 issue of 
Scientific American. Cilia are about 2000 angstrom in diameter, 
with a rather elaborate apparatus inside. There's not room for such 
apparatus inside this flagellum. 

For a long time there has been interest in how the flagellum 
works. Classic work in this field was done around 1951, as I'm 
sure some of you will remember, by Sir Geoffrey Taylor, the 
famous fluid dynamicist of Cambridge. One time I heard him give 
a fascinating lecture at the National Academy. Out of his pocket 
at the lecture he pulled his working model, a cylindrical body with 
a helical tail driven by a rubber-band motor inside the body. He 
had tested it in glycerin. In order to make the tail he hadn't just 
done the simple thing of having a turning corkscrew, because at 

that time nearly everyone had persuaded themselves that the tail doesn't rotate, it waves. Because, after all, to rotate you'd have to 
have a rotary joint back at the animal. So he had sheathed the turning helix with rubber tubing anchored to the body. The body had a 
keel. I remember Sir Geoffrey Taylor saying in his lecture that he was embarrassed that he hadn't put the keel on it first and he'd had 
to find out that he needed it. There haas since been a vast literature on this subject, only a small part of which I'm familiar with. But 
at that time G. I. Taylor's paper in the Proceedings of the Royal Society could conclude with just three references: H. Lamb, 
Hydrodynamics ; G. I. Taylor (his previous paper); G. N. Watson, Bessel Functions . That is called getting in on the ground floor. 



To come now to modern times, I want to show a picture of these animals 
swimming or tracking. This is the work of Howard Berg, and I'll first describe 
what he did. He started building the apparatus when he was at Harvard. He was 
interested in studying not the actual mechanics of swimming at all but a much 
more interesting question, namely, why these things swim and where they swim. 
In particular, he wanted to study chemotaxis in E. coli --seeing how they behave 
in gradients of nutrients and things like that. So he built a little machine which 
would track a single bacterium in x,y,z coordinates--just lock onto it optically and 
track it. He was able then to track one of these bacteria while it was behaving in 
its normal manner, possibly subject to the influence of gradients of one thing or 
another. A great advantage of working with a thing like E. coli is that there are so 
many mutant strains that have been well studied that you can use different 
mutants for different things. The next picture (Fig. 11) is one of his tracks. It 
shows a projection on a plane of the track of one bacterium. The little dots are 0.1 
sec apart so that it was actually running along one of the legs for a second or two 
and the speed is typically 20--40 microns/sec. Notice that it swims for a while and 
then stops and goes off in another direction. We'll see later what that might 
suggest. A year ago, Howard Berg went out on a limb and wrote a paper in 
Nature in which he argued that, on the basis of available evidence, E. coli must 

swim by rotating their flagella, not by waving them. Within the year a very elegant, crucial experiment by Silverman and Simon at 
UC-San Diego showed that this fact is the case. Their 
experiment involved a mutant strain of E. coli bacteria which 
don't make flagella at all but only make something called the 
proximal hook to which the flagella would have been attached. 
They found that whit antihook antibodies they could cause 
these things to glue together. And once in a while one of the 
bacteria would have its hook glued to the microscope slide, in 
which case the whole body rotated at constant angular 
velocity. And when two hooks glued together, the two bodies 
counter-rotated, as you would expect. It's a beautiful 
technique. Howard was ready with his tracker and the next 
picture (Fig. 12) shows his tracker following the end of one of 
these tethered E. coli cells which is stuck to the microscope 

slide by antibody at the place where the flagellum should have been. Plotted here are the two velocity components V_x and V_y. 
The two velocity components are 90 degrees out of phase. The point being tracked is going in a circle. In the middle of the figure, 
you see a 90 degrees phase change in one component, a reversal of rotation. They can rotate hundreds of revolutions at constant 
speed and then turn around and rotate the other way. Evidently the animal actually has a rotary joint, and has a motor inside that's 
able to drive a flagellum in one direction or the other, a most remarkable piece of machinery. 



I got interested in the way a rotating corkscrew can propel something. 
Let's consider propulsion in one direction only, parallel to the axis of 
the helix. The helix can translate and it can rotate; you can apply a 
force to it and a torque. It has a velocity v and an angular velocity 
\omega . And now remember, at low Reynolds number everything is 
linear. When everything is linear, you expect to see matrices come in. 
Force and torque must be related by matrices with constant 
coefficients, to linear and angular velocity. I call this little 2x2 matrix 
the propulsion matrix (Fig. 13). If I knew its elements A, B, C, D, I 
could then find out how good this rotating helix is for propelling 
anything. 

Well, let's try to go on by making some assumptions. If two 
corkscrews or other devices on the same shaft are far enough from 
one another so that their velocity patterns don't interact, their 
propulsive matrices just add. If you allow me that assumption, then 
there is a very nice way, which I don't have time to explain, of 
proving that the propulsion matrix must be symmetrical (Fig. 14). So 
actually the motion is described by only three constants, not four, and 
they are very easily measured. All you have to do is make a model of 
this thing and drop in a fluid that you are interested in or not, because 
these constants are independent of that. And so I did that and that's 
my one demonstration. I thought this series of talks ought to have one 
experiment and there it is. We're looking through a tank not of 
glycerin but of corn syrup, which is cheaper, quite uniform, and has a 
viscosity of about 50 P or 5000 times the viscosity of water. The nice 

part of this is you can just lick the experimental material off your fingers. 

Motion at low Reynolds number is very majestic, slow, and 
regular. You'll notice that the model is actually rotating but rather 
little. If that were a corkscrew moving through a cork of course, 
the pattern in projection wouldn't change. It's very very far from 
that, it's slipping , so that it sinks by several wavelengths while it's 
turning around once. If the matrix were diagonal, the thing would 
not rotate at all. So all you have to do is just see how much it turns 
as it sinks and you have got a handle on the off-diagonal element. 
A nice way to determine the other elements is to run two of these 
animals, one of which is a spiral and the other is two spirals, in 
series, of opposite handedness. The matrices add and with two 
spirals of opposite handedness, the propulsions matrix must be 
diagonal (Fig. 14). That's not going to rotate; it better not. 

The propulsive efficiency is more or less proportional to the 
square of the off-diagonal element of the matrix. The off-diagonal 
element depends on the difference between the drag on a wire 
moving perpendicular to its length and the drag on a wire moving 
parallel to its length (Fig. 15). These are supposed to differ in a 
certain limit by a factor of 2. But for the models I've tested that 
factor is more like 1.5. Since it's that factor minus 1 that counts, 
that's very bad for efficiency. We thought that if you want 
something to rotate more while sinking, it would be better not to 
use a round wire. Something like a slinky ought to be better. I 
made one and measure its off diagonal elements. Surprise, 

surprise, it was no better at all! I don't really understand that, because the fluid mechanics of these two situations is not at all simple. 



In each case there is a logarithmic divergence that you have to worry about, 
and the two are somewhat different in character. So that theoretical ratio of 
two I referred to is probably not even right. 

When you put all this in and calculate the efficiency, you find that it's really 
rather low even when the various parameters of the model are optimized. For 
a sphere which is driven by one of these helical propellers (Fig. 16), I will 
define the efficiency as the ratio of the work that I would have to do just to 
putt that thing along to what the man inside it turning the crank has to do. And 
that turns out to be about 1%. I worried about that result for a while and tried 
to get Howard interested in it. He didn't pay much attention to it, and he 
shouldn't have, because it turns out that efficiency is really not the primary 
problem of the animal's motion. We'll see that when we look at the energy 
requirement. How much power does it take to run one of these things with a 
1% efficient propulsion system, at this speed in these conditions? We can 
work it out very easily. Going 30 micron/sec, at 1% efficiency will cost us 

about 2\times 10^{-8} 
ergs/sec at the motor. 
On a per weight basis, 
that's a 0.5 W/kg, which 
is really not very much. 
Just moving things 
around in out 
transportation system, 
we use energy at 30 or 
40 times that rate. This 
bug runs 24 hours a day 
and only uses 0.5 W/kg. 
That's a small fraction of 
its metabolism and 
energy budget. Unlike 
us, they do not squander 
their energy budget just 
moving themselves 
around. So they don't 
care whether they have a 
1% efficient flagellum 
or a 2% efficient 
flagellum. It doesn't 

really make that much difference. They're driving a Datsun in Saudi Arabia. 

So the interesting question is not how they swim. Turn anything--if it isn't perfectly symmetrical, you'll swim. If the efficiency is 
only 1%, who cares. A better way to say it is that the bug can collect, by diffusion through the surrounding medium, enough 
energetic molecules to keep moving when the concentration of those molecules is 10^{-9} M. I've now introduced the word 
diffusion. Diffusion is important because of another very peculiar feature of the world at low Reynolds number, and that is, stirring 
isn't any good. The bug's problem is not its energy supply; its problem is its environment. At low Reynolds number you can't shake 
off your environment. If you move, you take it along; it only gradually falls behind. we can use elementary physics t look at this in 
a very simple way. The time for transporting anything a distance l by stirring, is about l divided by the stirring speed v . Whereas, 



for transport by diffusion, it's l^2 divided by D, the diffusion 
constant. The ratio of those two times is a measure of the 
effectiveness of stirring versus that of diffusion for any given 
distance and diffusion constant. 

I'm sure this ratio has someone's name but I don't know the 
literature and I don't know whose number that's called. Call it S 
for stirring number, it's just lv/D . You'll notices by the way that 
the Reynolds number was lv/ \eta, \eta is the kinematic viscosity 
in cm^2/sec, and D is the diffusion constant in cm^2/sec, for 
whatever it is that we are interested in following--let us say a 
nutrient molecule in water. Now, in every reasonably sized 
molecules, something like 10^{-5} cm^2/sec. In the size domain 
that we're interested in, of micron distances, we find that the 
stirring number S is 10^{-2}, for r the velocities that we are 
talking about (Fig. 18). 

 
In other words, this bug can't do anything by stirring its local surroundings. It might as well wait for things to diffuse, either in or 
out. The transport of wastes away from the animal and food to the animal is entirely controlled locally by diffusion. You can thrash 
around a lot, but the fellow who just sits there quietly waiting for stuff to diffuse will collect just as much. 
  



 
At one time I thought that the reason the thing swims is that if it swims it can get more stuff, because the medium is full of 
molecules the bug would like to have. All my instincts as a physicist say you should move if you want to scoop that stuff up. You 
can easily solve the problem of diffusing in the velocity field represented by the Stokes flow around a sphere---for instance, by a 
relaxation method. I did so and found out how fast the cell would have to go to increase--its food supply. The food supply if it just 
sits there is 4 \pi a ND , where a is the cell's radius (Fig. 19) and N is the concentration of nutrient molecules. to increase its food 
supply by 10% it would have to move at a speed of 700 microns/sec, which is 20 times as fast as it can swim. The increased intake 
varies like the square root of the bug's velocity so the swimming does no good at all in that respect. But what it can do is find places 
where the food is better or more abundant. that is, it does not move like a cow that is grazing a pasture--it moves to find greener 
pastures. And how far does it have to move? Well, it has to move far enough to outrun diffusion. We said before that stirring 
wouldn't do any good locally, compared to diffusion. But suppose it wants to run over there to see whether there is more over there. 
Then it must outrun diffusion, and ho do you do that? Well, you go that magic distance, D/v. So the rule is then, to out swim 
diffusion you have to go a distance which is equal to or greater than this number we had in our S constant. for typical D and v , you 
have to go about 30 \mu m and that's just about what the swimming bacteria were doing. If you don't swim that far, you haven't 
gone anywhere, because it's only on that scale that you could find a difference in your environment with respect to molecules of 
diffusion constant D (Fig. 20). 



Let's go back and look at one of those sections from 
Berg's track (Fig. 11). You'll see that there are some 
little trips, but otherwise you might ask why did it go 
clear over here and stop. Why did it go back? Well, 
my suggestions is, and I'd like to put this forward very 
tentatively, that the reason it does is because it's trying 
to outrun diffusion. Otherwise, it might as well sit still, 
as indeed do the mutants who don't have flagella. Now 
there is still another thing that I put forward with even 
more hesitation because I haven't tried tried this out on 
Howard yet. When he did his chemotaxis experiments, 
he found a very interesting behavior. If these things 
are put in a medium where there is a gradient of 
something that they like, they gradually work their 
way upstream. But if you look at how they do it and 
ask what rules they are using, what the algorithm is to 
use the current language, for finding your way 
upstream, it turns out that it's very simple. The 
algorithm is: if things are getting better don't stop so 
soon. If, in other words, you plot, as Berg has done in 
some of his papers, the distribution of path lengths 
between runs and the little stops that he calls 
"twiddles," the distribution of path lengths if they are 
going up the gradient gets longer. That's a very simple 
rule for working your way to where things are better. 
If they're going down the gradient, though, they don't 
get shorter. And that seems a little puzzling. Why, if 

things are getting worse, don't they change sooner? My suggestion is that there is no point in stopping sooner. there is a sort of 
bedrock length which outruns diffusion and is useful for sampling the medium. shorter paths would be a ridiculous way to sample. 
It may be something like that, but as I say, I don't know. the residue of education that I got from this is partly this stuff about simple 
fluid mechanics, partly the realization that the mechanism of propulsion is really not very important except, of course, for the 
physiology of that very mysterious motor, which physicists aren't competent even to conjecture about. 

I come back for a moment to Osborne Reynolds. That was a very great man. He was a professor of engineering, actually. He was 
the one who not only invented Reynolds number, but he was also the one who showed what turbulence amounts to and that there is 
an instability in flow, and all that. He is also the one who solved the problem for how you lubricate a bearing, which is a very subtle 
problem that I recommend to anyone who hasn't looked into it. But I discovered just recently in reading in his collected works that 
toward the end of his life, in 1903, he published a very long paper on the details of the sub mechanical universe , and he had a 
complete theory which involved small particles of diameter 10^{-18} cm. It gets very nutty from there on. It's a mechanical model, 
the particles interact with one another and fill all space. But I thought that, incongruous as it may have seemed to put this kind of 
stuff in between our studies of the sub mechanical universe today, I believe that Osborne Reynolds would not have found that 
incongruous, and I'm quite positive that Viki doesn't. 
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